Skip to main content

HGS MathComp - Where Methods Meet Applications

The Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp) at Heidelberg University is the only graduate school in Germany to focus on the complex topic of Scientific Computing. Placed in a vibrating research environment, the school offers a uniquely structured interdisciplinary education for PhD students. The program enables students to pursue innovative PhD projects with a strong application-oriented focus anywhere from mathematics, physics and chemical engineering sciences to cultural heritage.

Members of HGS MathComp are top experts in their fields and work on projects that combine mathematical methodology with topical research issues. Individual mentoring and career-building programs ensure that graduates acquire all qualifications for top positions in industry and science.


June 29, 2022
IWR Colloquium & HGS MathComp Von Neumann Lecture:  “Machine Learning and Inverse Design of Soft Materials”
Prof. Marjolein Dijkstra • Leonard S. Ornstein Laboratory, Utrecht University [More...]

30. Juni 2022
Akademische Mittagspause 2022 - Sammellust: "Eine mathematische Glyptothek – Von Gips- und Fadenmodellen zu Freiformflächen oder wie man den Faden weiterspinnt"
Dr. Susanne Krömker • IWR [Mehr...]

July 4-8, 2022
Integrative Think Tank (ITT) 2022 Heidelberg with SAP & Volume Graphics
HGS MathComp [More...]

5. Juli 2022
Eröffnungsveranstaltung Mannheimer Institut für intelligente Systeme in der Medizin (MIiSM)
Prof. Jürgen Hesser • IWR [Mehr...]
im Anschluss:
81. Heidelberger Bildverarbeitungsforum "Intelligente Vision Systeme"
Prof. Bernd Jähne • IWR [Mehr...]

July 11, 2022
Symposium: "(Mathematical) Lessons From A Pandemic"
Prof. Markus Kirkilionis • Mathematics Department, University of Warwick, UK [More...]

July 13, 2022
IWR Colloquium:  “Gaussian and Non-Gaussian Continuous Processes, in Time, Space, and on Graphs”
Prof. Jonas Wallin • Department of Statistics, Lund University, Sweden [More...]

22. Juli 2022
Akademische Mittagspause 2022 - Sammellust: "Sammeln, Auswählen, Klassifizieren – ein mathematischer Blick auf das Thema Sammlungen"
Dr. Michael J. Winckler • IWR & HGS MathComp [Mehr...]

July 27, 2022
IWR Colloquium:  “Geometric Multilevel Optimization”
Prof. Stefania Petra • Mathematical Imaging Group, Institute of Applied Mathematics, Heidelberg University [More...]

August 1, 2022
Workshop: “Validity, Reliability, and Significance: A Tutorial on Statistical Methods for Reproducible Machine Learning”
Prof. Stefan Riezler • IWR [Mehr...]


May 22, 2021
ERC Advanced Grant for Prof. Anna Wienhard
Congratulation to HGS MathComp Principal Investigator Prof. Anna Wienhard on being awarded a highly endowed grant from the European Research Council (ERC) for her project on symmetries in mathematics. [Link]

April 7, 2021
Using AI to Diagnose Neurological Diseases Based on Motor Impairment
Under the leadership of HGS MathComp Principal Investigator Prof. Björn Ommer and in collaboration with researchers from Switzerland, a new computer-based approach to analyse movement patterns through machine learning has been developed at Heidelberg University. [Link]

26. März 2021
3D-Scannen von Inschriften einer mittelalterlichen Altarplatte auf der Klosterinsel Reichenau
Im März 2021 haben Dr. Susanne Krömker und ihre Forschungsgruppe mithilfe eines hochauflösenden 3D-Scanners eine frühmittelalterliche Altartafel in der Kirche St. Peter und Paul in Niederzell, UNESCO-Welterbe Klosterinsel Reichenau aufgenommen. Die Ausrüstung wurde durch die HGS MathComp zur Verfügung gestellt. [Link]

March 1, 2021
Heidelberg Geoinformation Scientists Develop new Computer-Based Method to Analyse Topographic Changes
The research group of HGS MathComp Principal Investigator Prof. Bernhard Höfle has developed a new analysis method to help improve our understanding of processes shaping the Earth’s surface like those observed in coastal or high-mountain landscapes. Unlike conventional methods that usually compare two snapshots of the topography, the Heidelberg approach can determine – fully automatically and over long periods – when and where surface alterations occur and which type of associated changes they represent. [Link]